QMesh: A long-range, low-cost wireless mesh network for digital voice communications

Dan Fay, KG5VBY TAPR DCC 2020

Who am I?

- Licensed radio amateur since September 2017, callsign KG5VBY
 - Special event communication
 - Packet radio/digital communications
- Presented at TAPR DCC 2018 the paper "Beyond Line-of-Sight UHF Digital Communications with the LoRa Spread Spectrum Waveform"

La Luz Trail Run 2018

What is QMesh?

- It's another MANET/wireless mesh network protocol
- What makes it unique
 - Isochronous -- can handle streaming data like voice
 - Self-healing/self organizing
- Relatively low datarate (at most 10's of Kb/s)
 - Enough to support vocoded voice (700bps-1600bps)
 - Can also carry small amounts of data (location, telemetry, etc.)
- Uses the LoRa Chirp Spread Spectrum (CSS) waveform
 - Provides better Eb/N0 than "standard" modulations (FSK, PSK, etc.)
 - Unique properties of the LoRa waveform (spread spectrum, low symbol rate) enable QMesh to work

MANETS/Wireless Mesh Networking

- MANET = Mobile Ad-Hoc NETwork
 - Self-assembling
 - Self-healing
- Mesh networking
 - Nodes relay packets until they reach their destination
 - Two major types: routed and flooded

Source: <u>https://blog.particle.io/2018/04/28/how-to-build-a-</u> wireless-mesh-network/

Flooding vs. Routing

- Routing
 - Nodes repeat packets if they're along a *route* to the packet's destination
 - Doesn't retransmit if it doesn't move the packet closer to its destination
 - Relatively complicated due to need to (re)discover and (re)build routes
- Flooding
 - A node repeats every packet it receives
 - Provides redundancy
 - Self-healing, nodes can freely join and leave without any other communications needed
 - Can be inefficient vs. routing
 - Good for multicast (e.g. PTT voice, tracking telemetry of team members)
 - Susceptible to the Broadcast storm problem

Synchronized Flooding (what QMesh uses)

- Nodes repeat packets at the same time
- Good for streaming (isochronous) voice
- Colliding packets could be a problem

Synchronized Flooding Example

10

LoRa

- LoRa is Semtech's proprietary implementation of Chirp Spread Spectrum (CSS)
 - Targets battery-powered, Internet-of-Things (IoT) devices
 - Used to implement LPWAN protocol LoRaWAN
- Benefit: CSS gives large processing gain vs. FSK/OOK
 - LoRa@1172bps: -132dBm Rx sensitivity on 70cm
 - FSK@1200bps: -123dBm Rx sensitivity on 70cm
 - LoRa supports bitrates up to 37500bps (62500bps on newer chipsets)
- Highest sensitivity rate possible for LoRa is -148dBm
 - Not used much because it requires a TCXO to function
 - Low data rate -- 18bps at this sensitivity level
- LoRa is becoming increasingly popular, so products are easy to find
 - HopeRF is a popular module maker; some integrated w/MCU emerging
 - 33cm and 70cm modules easy to find
 - LoRa chipsets support 137MHz through 1GHz, as well as the 2.4GHz band
- LoRa provides large sensitivity improvement (9dB or more) vs. FSK

Source:

https://www.digikey.com/en/articles/tec hzone/2016/nov/lorawan-part-1-15-kmwireless-10-year-battery-life-iot

LoRa Parameters

Spreading Factor (SF)

- 2^{SF} = number of chips/symbol
- Higher SF gives higher Rx sensitivity in exchange for lower data rates
- Different SF's are somewhat orthogonal, as well as different IQ polarities
- **Bandwidth** how "wide" the chirp is
 - Wider bandwidth gives higher data rates at expense of Rx sensitivity
 - 500KHz, 250KHz, and 125KHz are typically used
- Coding Rate specifies the FEC (Hamming code)

Vg IVI	ouem Calculator 1001								
ator	Energy Profile								
Calcul	lator Inputs		Selected Configuration						
I	LoRa Modem Settings				VR_PA	þ	_		
9	Spreading Factor	12	\sim				ŝ		
E	Bandwidth	125	✓ kHz		RFO	<u>-</u>	Tx		
0	Coding Rate	1	✓ 4/CR+4		RFIC		- ⊢ ⊢ ← Rx		
L	ow Datarate	Optimiser On					Ē		
F	Packet Configuration			P	reamble		Payload	CRC	
F	ayload Length	8	Bytes						
F	Programmed Preamble	6	Symbols	Calculator Outputs					
Т	fotal Preamble Length	10.25	Symbols	Timing Performance					
ł	Header Mode	Explicit Heade	er Enabled	Equivalent Bitrate	292.97	bps	Time on Air	761.86	ms
C	CRC Enabled	Enabled		Preamble Duration	335.87	ms	Symbol Time	32.77	ms
F	RF Settings								
C	Centre Frequency	433000000	+ Hz	RF Performance			Consumptio	n	
Т	Transmit Power	17	🖨 dBm	Link Budget	155	dB	Transmit	90	m/
H	lardware Implementation	RFIO is Share	d	Receiver Sensitivity	-138	dBm	CAD/Rx	10.8	mA
				Max Crystal Offset	72.2	ppm	Sleep	100	nA

The (FM) Capture Effect

- Many types of receivers receive exclusively the strongest signal when that signal is stronger (by 3dB or more) than other signals
 - Necessary for e.g. Wi-Fi, Bluetooth, etc. for coexistence with other transmitters in the area
 - Constant-envelope modulation schemes (FM, FSK, some PSK, etc.) are most wellknown for the capture effect
 - AM and SSB receivers do not experience capture
- Effect observed when two people try to transmit into same FM repeater
 - Almost always, one person is heard
 - Other person(s) comes off as some sort of distortion/noise
- LoRa is a constant-envelope modulation that *does* experience the capture effect

Using the Capture Effect

- Capture effect means that we can successfully receive collisions if the colliding packets are far enough apart in received power
- Can leverage capture effect to make synchronized flooded protocols work without everyone interfering with each other
- Tricky to do with FSK, need some sort of phase dithering with good forward error correction (need SDR or custom radio)
- Easier to do with spread spectrum
 - Glossy Project (academic) used DSSS in 802.15.4
 - Later work has looked at doing the same with LoRa

Increasing Capture Success with LoRa

- Basically, "spread out" the overlapping LoRa signals so they interfere less with each other
- LoRa has some features we can use to increase the likelihood of successful capture
 - Frequency separation between chips
 - Low chirp (symbol) rate
 - Tolerance of frequency error (up to +/- 25% of the LoRa bandwidth)
- Randomly "wobble" the frequency
 - Can put chips "between" each other
 - Shift chirps around so that they don't overlap in time/frequency
- Can also shift things around by adding a timing offset
 - Need to encode timing offset within the packet so that the next node can compensate
 - Can't shift timing more than half a symbol -- receiver locks onto weaker packet first, then gets drowned out by stronger packet coming in later

Chip-Level LoRa Overlap Reduction

Two LoRa signals on completely Different channels Two LoRa signals on the same frequency Two LoRa signals with a very small frequency offset

Symbol-Level LoRa Overlap Reduction

Two LoRa signals on completely Different channels

Two LoRa signals on the same frequency

Two LoRa signals with a small frequency offset

Two LoRa signals with a timing offset

The QMesh Protocol Overview

- Is based on TDMA (Time Division Multiple Access), with same-size time slots.
- A transmitter operates at a 33% duty cycle
 - Transmits a packet every third time slot (waits two timeslots before transmitting again)
- A receiving node
 - Decodes the packet and retransmits if appropriate
 - If retransmitting, waits one timeslot before retransmitting
- Time gap between receipt and retransmission
 - Allows time to decode packets, including complicated forward error correction
 - Gives a "second chance" to receive a packet by a node one hop downstream

QMesh Protocol In Action

Forward Error Correction (FEC)

- LoRa has a very simple, Hamming Code-based FEC built into it
- Can likely gain at least a few dB of performance with a decent FEC
 - Theoretical gain may be 2-10dB of coding gain in an AWGN channel (Additive White Gaussian Noise – free space line-of-sight)
 - Possibly even better in multipath-heavy situations
 - Substantial benefits in a collision-heavy environment
- Currently using Reed-Solomon-Viterbi (RSV) coding
 - Using libcorrect, which is a simplified port of Phil Karn KA9Q's libfec
 - ¹/₂ rate (encoded with twice as many bits as the original data)
 - Constraint length = 7 used
 - 8 additional bytes for Reed-Solomon outer code
- Hard decoding may be possible to extract soft decoding information from radio in the future

QMesh Test Node

- LoRa Shield + STM32 NUCLEO-144 Board
- USB on the shield (black cable) supplies power to both boards
- Red USB cable connects to computer, provides debug and serial port
- OLED display provides live information without needing a connected PC

QMesh LoRa Shield Overview

- Built a custom shield for the "Zio" connector on the STM32 NUCLEO-144 board
 - 1W LoRa module
 - 128Mbit QSPI NOR flash for configuration and logging
 - OLED display
 - Capable of powering itself and STM32 board via USB
- Uses EByte 400M30S module
 - Supports 410MHz-493MHz (entire 70cm amateur band)
 - Based on SX1268 LoRa radio
 - 30 dBm (1W) PA
 - External LNA (roughly 2dB improvement in Rx sensitivity)
 - TCXO
- EByte also makes a pin-compatible version that supports the 915MHz/33cm band
- EByte module's output tested as clean by Sean Turner KI5CBG
 - ~29-30dBm power output measured
 - Spurious harmonics at least 60dB below fundamental

QMesh LoRa Shield Design

- Designed in KiCAD
 - Free, Open Source (FOSS) PCB design tool
 - Reasonably competitive with commercial tools (Eagle, Altium Designer)
- Two-layer board
 - Chinese board houses will produce two-layer boards that are <10cm on a side for cheap (\$5-\$10 for a run of 5-10)
 - Some will also populate some SMT parts for cheap
 - Power/ground planes and trace routing can be tricky vs. 4+ layer boards
 - Coplanar waveguide best way to do transmission lines on the board
- Lots of power decoupling capacitors
- Ample ESD protection on data lines, power, and RF

Node Configuration

- 24 bytes packet size, header+payload
- 51 bytes total coded data
- BW=250KHz, SF=9, CR=0*
- Originator node at minimum Tx power (OdBm into PA) transmitting through a dummy load
- Other nodes transmitting at maximum power
 - 20dBm into PA, ~1W output
 - 2m/70cm HT whip antennas
- Testing collisions
 - Worst case scenario for interference
 - Antennas are ¼ wavelength apart

Discussion

- When FEC is used, PRR is 99%+ for one, two and three node setups
- FEC seems to make a big difference here
 - One node has 99%+ PRR w/o FEC
 - Two nodes has ~93% PRR w/o FEC
 - Three nodes has ~90% PRR w/o FEC
- Appears the raise the noise floor
 - Weak signals do not get received

Next Steps – FM Micro-Repeaters

- Develop small FM repeaters that encode/decode voice as codec2 and use QMesh as a backhaul
 - Compact, can run off solar power
 - Easy to stand up a series of linked repeaters
 - Can also be used to extend coverage of existing repeaters
- Big benefit is accessibility
 - People can use their existing radios, so can benefit from QMesh without having to design special radios
 - Less hardware needed by users to benefit from QMesh

LoRa + Analog FM Architecture

Contact Info

- QMesh project
 - **Github:** <u>https://github.com/faydr/QMesh</u> -- source code
 - Hackaday.io: <u>https://hackaday.io/project/161491-lora-based-voice-mesh-network</u> project overview
- **Blog:** <u>https://faydrus.wordpress.com</u> (describes a lot of my radio/maker experiments)
- E-mail: <u>Daniel.fay@gmail.com</u> (<u>kg5vby@arrl.net</u> should also work)
- Twitter: @faydrus

